FLOOD FIGHTING AND SURVEILLANCE

Larry Boardman, P.E. Civil Engineer USACE, Omaha District 12 March 2019

"The views, opinions and findings contained in this report are those of the authors(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other official documentation."

HOT SHOWN

- LEVEE DESIGN CONSIDERATIONS
- COMMON FAILURE MODES
- SURVEILLANCE/INSPECTION

LEVEE DESIGN CONSIDERATIONS

- Overtopping Resistance
- Through Seepage
- Underseepage
- Slope Stability
- Streambank Erosion Protection

LEVEE COMPONENTS -TYPICAL CROSS SECTION

Random Fill or Clay Core

Through Seepage Control:

- Compacted Clay Riverside Face Underseepage Control
- Cutoff Trench
- Landside Underseepage Berm
- Relief Wells and Toe Drains

Erosion Control:

- Topsoil and Vegetative Cover
- Riprap Erosion Control River Bank and Levee Face

OVERTOPPING

Common locations for overtopping:

- Low areas created by vehicle traffic such as as access ramps
- Low areas created by postconstruction foundation settlement
- Levees with sand cores will not resist much overtopping
- Levees with clay cores are much more resistant to overtopping but will eventually fail with sustained overtopping

OVERTOPPING (R613 AND R616 SAND BAG LEVEE RAISES)

OVERTOPPING (L550 – NORTH OF HWY 136)

THROUGH SEEPAGE

CONTRIBUTING FACTORS INCLUDE:

- Areas with a Thin Compacted Clay Layer on the Riverside Slope – Sand Core Levees
- Animal Burrows that Extend Through the Compacted Clay Layer
- Levee Penetrations
- Culvert Joint Separations

THROUGH SEEPAGE / PIPING

THROUGH SEEPAGE / PIPING <u>AT STRUCTURES</u>

Conduits (drainage structures / pump stations / utilities), or other levee penetrations (e.g., floodwalls) can create potential weak areas in a levee. Due to compaction difficulties, there is the potential for seepage and piping of embankment material along exterior of conduits, or into conduit joint separations.

PIPING AT LEVEE PENETRATIONS

L624-627 – INDIAN CREEK

DESIGN APPROVED: 2014 CONST. COMPLETE: FALL 2015 SINKHOLES IDENTIFIED: SPRING 2016

THROUGH SEEPAGE / PIPING

UNDERSEEPAGE - CONTRIBUTING FACTORS

- Geological cross section Historic River Meanders
- Lack of an Adequate Riverside Natural Blanket
- Lack of an Adequate Landside Natural Blanket (Thickness and/or composition)
- Damaged Blanket from Erosion
- Damaged Blanket from Encroachments Riverside or Landside Excavations for Drainage Ditches, Borrow Site Locations,
 - Quarries, Building Foundations, etc.
- \checkmark
- Inefficient Relief Wells or Toe Drains

UNDERSEEPAGE / PIPING

UNDERSEEPAGE / PIPING L575 - HIGHWAY 2

UNDERSEEPAGE / PIPING (L550)

UNDERSEEPAGE / PIPING (L550)

SLOPE FAILURES

RIVERSIDE EROSION AREAS OF CONCERN

- Riverside Ramps
- Riverside Levees
- Riverside Fences
- Historic Borrow Pits
- Levee Alignment /
 Floodplain Geometry
- Trees / Restrictions

STREAMBANK EROSION (L575 – NISHNABOTNA RIVER)

SURVEILLANCE / INSPECTIONS

IN-HOUSE FLOOD SURVEILLANCE TEAMS

- Report to EOC
- Project Assignments
- Partnered for safety and efficiency
- Participate in pre- and post-day hand off meetings
- · Briefed on the current & forecasted flood situation

SURVEILLANCE REFERENCES

- Operations and Maintenance Manuals
- Annual Levee Inspections
- Periodic Inspections
- Google Earth Historic and Recent Aerials
- USACE Project Personnel
- Meet with the Project Sponsor

SURVEILLANCE TOOLS

- Cell phones
- Good Project Maps
 - Know your evacuation routes.
 - Know your nearest hospital location.
- Aerial Reconnaissance

(Get on a helicopter whenever possible)

- GPS Cameras
- Rod and Level
- Measuring Tape

SURVEILLANCE TOOLS

- Lathe •
- Markers
- Flagging / Spray Paint •
- Life Jackets
- Safety Vests •
- **Binoculars**
- Flash Lights •
- Food and Water
- **Bug Spray**
- Sun Block

U.S.ARMY

FLOOD SURVEILLANCE/INSPECTIONS FEATURES/ISSUES

floodwall_line

ee_flood_fight_point ____eclosure_structure_line

pump_station_point

protected_area

evee_crossing_point

levee_centerline

piezometer point

rehabilitation line

cross section line

levee_station_point

levee_relief_well_point •

encroachment point

gravity_drain_line

FLOOD SURVEILLANCE / INSPECTIONS RIVERSIDE SLOPE & LEVEE CREST

Riverside Issues

- Levee freeboard read staff gages
- Erosion
 - High Water Velocities / Turbulent Flows
 - Penetrations
- Crest Issues
 - Overtopping
 - Cracking / Slides

FLOOD SURVEILLANCE/INSPECTIONS LANDSIDE SLOPE & LANDSIDE TOE

- Landside Slope Issues
 Through Seepage / Piping
 Rodent Holes
 Depression at Structures
 Crack / Slides
- Landside Toe and Adjacent Area
 Sand boils / Piping
 Drainage Ditches
 Slides
- Relief Wells
 Location
 Flow
 Boils

FLOOD SURVEILLANCE/INSPECTIONS STAFF GAGES IS THE WATER LEVEL GOING UP OR DOWN?

Gage 1 - Just Downstream of Highway 1 Bridge			
Date	Time	Reading	Water Level
1-Apr	8:00	84.3	
1-Apr	12:00	84.8	_
1-Apr	16:00	85.3	ncre
1-Apr	20:00	85.7	asin
2-Apr	0:00	86.0	
2-Apr	4:00	86.1	
2-Apr	8:00	86.0	
2-Apr	12:00	85.9	Dec
2-Apr	16:00	85.6	reas
2-Apr	20:00	85.2	sin

is at a gage reading of 85.7 Top of water at this location

FLOOD SURVEILLANCE / INSPECTIONS

Underseepage-Boils (Landside toe area primarily)

Flowing clear or moving material?

FLOOD SURVEILLANCE / INSPECTIONS

Slope Instability – Cracking (Levee Crest Primarily)

FLOOD SURVEILLANCE/INSPECTIONS DRAINAGE STRUCTURES, SEWERS, OR OTHER PENETRATIONS

FLOOD SURVEILLANCE/INSPECTIONS

CLOSURE STRUCTURES – ROADWAYS / RAILROAD CROSSINGS

Types: Swinging gates/framespanels/earth berms/sand bags When are they erected?-O&M Manual (River Stages, Weather Forecasts) Surveillance - Monitor for Seepage

FLOOD SURVEILLANCE/INSPECTIONS

RELIEF WELLS/TOE DRAINS

Are they functioning? (Monitor for Flow and Adjacent Boils)

37

DOCUMENTATION

- Document Conditions in the Field
 - •Flagging, stakes, paint
 - •Photos, videos
- Prepare Daily Reports
- Discuss issues to USACE Management and Levee Sponsors
- Post-flood Project Information Report (PIR) and Levee Repairs

